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Abstract 

A multistate smearing method previously introduced allows a de- 
tailed study of the properties of heavy-light mesons in lattice QCD. The 
Coulomb gauge wave functions for the ground state, the first radially 
excited S-wave state, and the lowest P-wave states of a heavy-light me- 
son are calculated in quenched approximation. The results are found 
to be in remarkably good agreement witb the predictions of a simple 
relativistic quark model. 
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1 Introduction 

The dynamics of QCD simplifies in two limits: (1) the usual chiral limit 
(m, = 0) and (2) the heavy quark limit(mg - cu)[l]. Heavy-light systems 
thus provide an ideal laboratory for lattice QCD studies. The develop- 
ment of lattice methods for studying heavy-light mesons has received much 
attention[2]. The static approximation (ms -t 00) in which the heavy quark 
propagator is replaced by a straight time-like Wilson line provides a frame- 
work which allows a quantitative study of masses, decay constants, mixing 
amplitudes, and electroweak form factors. Since heavy-light mesons have 
only one dynamical light (valence) quark, these systems are also well suited 
to the study of constituent quark ideas[3] and the chiral quark model[-l]. 

The nonrelativistic (NR) potential model for heavy Qv mesons has been 
very successful in describing the properties of the c-d and b6 families of 
resonances.[5] Lattice calculations of the QCD potential[G] and direct simu- 
lation of heavy Qv systems on the lattice using either an improved Wilson 
action[7] or a NR fermion action[S] agree well with the phenomological NR 
potential model. Therefore, one interesting dynamical question for heavy- 
light systems is the nature and extent of the deviation from the NR potential 
picture as the dynamical quark becomes light. In this note we report results 
of a numerical lattice study of this question. Our findings support a sur- 
prisingly simple answer. The Coulomb gauge wavefunctions[9] obtained in 
lattice QCD agree, within the accuracy of our calculations, with the results 
of asimple relativistic generalization of the NR quarkonium potential model. 
It is only necessary to replace the NR kinetic energy term in the Hamilto- 
nian by its relativistic form, leaving the NR potential unchanged. The only 
adjustable parameter is a quark mass parameter 11. This description holds 
down to fairly small values of the current quark mass, corresponding to a 
pion mass of approximately 300 MeV/c*, well into the region where the NR 
description fails. In addition to their theoretical interest, our results have 
practical implications for future lattice studies. Precise lattice QCD calcula- 
tions require the construction of operators which have large overlap with the 
hadronic state of interest and small overlap with other low-lying states. Our 
approach provides an optimal set of valence quark operators for heavy-light 
mesons. 

In the next section we review the multistate smearing method[lO] which 
was used to extract lattice wavefunctions, and we discuss the essential details 
of our lattice calculations. In s&Ion 3 we describe a lattice version of the 
relativistic quark model. In section 4 the wavefunctions for the relativistic 
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quark model are compared with those extracted from lattice &CD. Some 
implications of our results are discussed in section 5. 

2 Wavefunctions in Lattice QCD 

In actual lattice calculations, many practical issues must be addressed. In 
this section we focus on the issues of operator smearing. The properties of 
hadronic states are studied using correlation functions of operators which 
couple to the state. Originally local operators were used. More recently 
smeared (non-local) operators have been found to improve the ability to 
extract the masses of meson and baryon ground states[ll]. Many of the 
recent studies have been done with configurations and propagators fixed in 
Coulomb gauge and operators which smear the position of the quark field 
uniformly over a spatial cube of variable size[l2]. However a constant cube of 
any size is a very crude approximation to the ground state wavefunction[l3]. 
Hence, the propagator generally has significant contamination from higher 
states out to times large compared to the inverse of the energy splitting 
between the ground state and the lowest excited state. This is a particular 
problem in the study of heavy-light correlators because they become noisy 
rather rapidly in time. Unfortunately, this is an unavoidable feature of 
heavy-light systems[l4]. Recently a multistate smearing technique has been 
proposed[lO] which allows the extraction of the properties of heavy-light 
states from relatively short times[l5]. 

The basics of the multistate smearing method are simple. For example, 
consider the pseudoscalar channel. Let &,!..,(q (u = 1,2, . . ..N) be a set 
of linearly independent, orthogonal wavefunctions with S-wave symmetry. 
These wavefunctions are generated by a Hamiltonian, II and ordered by 
eigenvalue, E(“). The basic multismeared correlator, SC”) (a = 1,2,, . . . . N), 
is given by: 

$4 CT; T) = c e,L,(r’, T) P 

The heavy quark operator, Q, simply generates a product of gauge links 
along the time direction. S(“) is a 3 x 3 matrix in color indices and a 4 x 4 
matrix in Dirac indices, the same as the light quark propagator. 

For given quantum numbers and a well-chosen set of smearing wavefunc- 
tions it is possible to accurately extract the low-lying heavy-light states with 
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only a small number of smearing functions. 
The investigation presented here used an existing set of 50 configurations 

(separated by 2000 sweeps) generated by ACPMAPS on a 113~ x 32 lattice 
at p = 5.9. The configurations were fixed to Coulomb gauge and light quark 
propagators with K = ,158 were used. Only the four lowest energy smearing 
functions are included (IV = 4). 

The appropriate smearing functions can be obtained by an iterative pro- 
cess: 

l Start with a reasonable smearing function for the ground state. For 
our initial choice, an exponential exp(-R/Ro) with Ro = .5a was used. 

l Measure the ground state wavefunction at moderate time T. The sin- 
glet piece of the wavefunction (obtained by projecting on the spin and 
color singlet piece of the smeared correlator S(‘)(?, T)) was measured 
at times (3 - 6)~ 

l Tune the parameters in the Hamiltonian, H to give the best fit for the 
lowest eigenfunction to the measured ground state wavefunction. 

l Generate the required number (N) of smearing wavefunctions from 
this tuned H. 

l Use this set of smearing functions to calculate the multismeared cor- 
relators. 

l To take maximum advantage of these measurements, define a N x N 
(4 x 4) coupling matrix, 

C’=*(T) = c S$$!,,(F)S(‘=)(T; T) (2) 
? 

Diagonalizing the coupling matrix at each time T gives eigenvalues, 
X’(T), which are related to the mass of the it* heavy-light state by 

&‘(T) = - log(X’(T))/log(X’(T f 1)) (3) 

and eigenvectors which give the coupling of the set of smearing func- 
tions to that it* state. 

l Finally, the improved wavefunctions for the heavy-light states can be 
used to retune the parameters in H and then the whole process re- 
peated with better smearing functions. 

A critical element in this procedure is the choice of the trial Hamiltonian 
H with appropriate parameters. In the next section we discuss our choice. 
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3 Relativistic Quark Model 

The optimized wavefunctions obtained from our lattice data by the mul- 
tistate smearing method turn out to be, within errors, the same as the 
eigenfunctions of a, lattice version of the spinless, relativistic quark model 
Hamiltonian, which we will now define. In the absence of gauge fields, the 
free quark Hamiltonian can be exactly diagonalized by introducing momen- 
tum space creation and annihilation operators for quarks and antiquarks. 
In the continuum, 

Ho = / &mT [ai(P)ai(P) + Dt(P)PdP)] (4) 

where the sum is over spin and color labels. In terms of the covariant 
quark propagator, the particle and antiparticle operators are associated with 
propagation forward and backward in time, respectively. Since Ha contains 
no pair creation (otat) t erms, it is possible to formulate the eigenvalue 
problem as that of a one-body operator, 

Ho-&K-S (5) 

If we now turn on the gauge interaction and introduce a heavy-quark, static 
color source, the description of the bound light quark becomes, in principle, 
drastically more complicated. We know that, in the limit p >> hqc~ where 
the dynamical quark becomes heavy, the primary effect of the color source is 
to introduce a static, confining potential V(r) whose form is well-measured 
and consistently given by both Qg phenomenalogy and lattice QCD, 

HQ - H = Ho + V(r) (6) 

At this stage, the Hamiltonian can still be regarded as a one-body 
operator.[l6] As the mass of the quark becomes light, one expects more com- 
plicated effects arising from the gauge interaction which render the Hamil- 
tonian eigenvalue problem intractable. These effects include the creation of 
gluons and light q?j pairs, as well as the exchange of transverse and non 
instantaneous gluons with the static source. (Note that qtj pairs arise even 
in quenched approximation, due to backward-in-time propagation of a va- 
lence quark.) From the numerical results presented in the next section, we 
conclude that these effects are relatively small, and that the heavy-light me- 
son system is well-described by the Hamiltonian (6), which we will refer to 
as the spinless relativistic quark model (SRQM). 
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The construction of explicit eigenfunctions of the SRQM Hamiltonian 
is easily accomplished by a numerical procedure. First the operator H is 
discretized on a 3D lattice by replacing the spatial derivatives with finite 
differences. Thus the free lattice Hamiltonian has the form, 

Ho= -yfi’tp2 
Ji 

(7) 

where pi; = sin (pia)/a. The potential energy V(r) is just the static energy 
measured on the same configurations used to study the heavy-light spec- 
trum. Then the resolvent operator (E - H)-’ acting on a source vector x is 
computed by a numerical matrix inversion (conjugate gradient) algorithm. 
Here x can be any vector that has nonzero overlap with the eigenstate of 
interest. Finally, the parameter E is varied to find the poles in the output 
vector (E - II)-‘x. The location of the pole is an eigenvalue of H, and its 
residue is the corresponding eigenfunction. In the next section we compare 
the wavefunctions obtained in this way from the SRQM Hamiltonian with 
the lattice QCD results. 

4 Comparison of Wavefunctions 

Using the four state smeared correlator described in section 2 an initial study 
for the S-wave channel was carried out. In the first pass (using an expo- 
nential smearing function for the ground state) the value p = .45 was used. 
After some iterative improvement of the smearing functions, it was found 
that the value p = .20 for the dimensionless mass parameter in the SRQM 
Hamiltonian gave the best agreement with the lattice QCD wavefunctions 
at p = 5.9,r;. = ,158. In Fig. 1 the LQCD wavefunction is plotted with the 
SRQM wavefunction. For comparison, the nonrelativistic (NR) Schrodinger 
wavefunction (obtained by replacing the relativistic kinetic term by p2/2m) 
is also plotted. The mass parameter in the NR Hamiltonian was adjusted 
to give the same slope at the origin in the ground state wavefunction. The 
effects of relativistic quark propagation are clearly seen in our data, since 
the corresponding nonrelativistic Schrodinger equation with a kinetic term 
p2/2m fails to give an adequate description of the measured wave functions. 

Notice that, for large r, the QCD and SRQM wavefunctions both fall 
exponentially. On the other hand, the NR wavefunction falls faster than 
exponentially (esp(-or;)), as expected from the behavior of the analytic 
solution in a pure linear potential (Airy function). This is a clear indication 
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Figure 1: Comparison of the 1S state in LQCD (x’s) with the NRQM (t’s) 
and the SRQM (boxes). 

of relativistic effects, as faster than exponential fall of the wavefunction is in- 
consistent with the asymptotic behavior (- e-“” ) of the nonlocal relativistic 
kinetic kernel (Fourier transform of Jm). 

Remarkably, by including the relativistic kinetic term, the SRQM wave- 
functions are brought into excellent agreement with those of lattice QCD, 
without changing the potential from its nonrelativistic form. 

In Fig. 2 we plot the excited 2S state from LQCD along with the cor- 
responding wavefunctions from the SRQM and the NR model. The QCD 
wavefunction is somewhat more peaked at the origin, however, the overall 
agreement between QCD and the SRQM is excellent. Here, there are no 
adjustable parameters, fi being already fixed from the 1S state fit. 

Finally, in Fig. 3 we show some preliminary results of a study of the 
IP state. The data points depict the evolution of the P-wave LQCD radial 
wavefunction extracted from time slices T = 2, T = 4, and T = 6, sta,rting 
with an approximate guess for the initial smearing function. The ansatz 
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Figure 2: Comparison of the 2S state in LQCD (x’s) with the NRQM (+‘s) 
and the SRQM (boxes). 

for the initial smearing function used here was a simple remor form. As 
the LQCD wavefunction evolves in Euclidean time, it appears to approach a 
true eigenstate whose wavefunction again agrees well with the SRQM result, 
with no adjustable parameters. 

5 Discussion 

In the heavy-light system, we have been able to calculate accurate lattice 
QCD wavefunctions by the multistate smearing method. These wavefunc- 
tions are in remarkable agreement with the wavefunctions generated by a 
spinless relativistic quark model (SRQM) with a potential (static energy) 
calculated from the same lattice configurations. By adjusting a single re- 
duced mass parameter in the SRQM, we obtain good agreement with the 
measured lattice QCD wavefunctions for not only the ground state, but also 
for the lowest lying P-wave states and the first radially excited S-wave. Ad- 
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Figure 3: The 1P state in LQCD extracted from T=2 (t’s), T=4 (boxes), 
and T=6 (X’S). For comparison the SRQM wavefunction (solid line) is also 
shown. 

ditional studies are in progress using a variety of lattice sizes, gauge coupling 
strengths, and light quark masses. Preliminary results of these studies are 
fully consistent with the conclusions presented here. 

The agreement with the SRQM suggests that the relativistic propaga- 
tion of the light valence quark is the most important effect which must be 
included in a description of heavy-light mesons. Other field theoretic effects 
such as the presence of multibody components of the wavefunction (contain- 
ing gluons along with light qij pairs) are of less quantitative importance in 
determining the shape of the valence quark wavefunction. Further numeri- 
cal studies of the connection between QCD and the relativistic quark model 
are planned. 
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